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PREFACE

The purpose of this monograph is to give an axiomatic
foundation for the theory of probability. The author set himself
the task of putting in their natural place, among the general
notions of modern mathematics, the basic concepts of probability
theory—concepts which until recently were considered to be quite
peculiar.

This task would have been a rather hopeless one before the
introduction of Lebesgue’s theories of measure and integration.
However, after Lebesgue’s publication of his investigations, the
analogies between measure of a set and probability of an event,
and between integral of a function and mathematical expectation
of a random variable, became apparent. These analogies allowed
of further extensions; thus, for example, various properties of
independent random variables were seen to be in complete analogy
with the corresponding properties of orthogonal functions. But
if probability theory was to be based on the above analogies, it
still was necessary to make the theories of measure and integra-
tion independent of the geometric elements which were in the
foreground with Lebesgue. This has been done by Fréchet.
~ While a conception of probability theory based on the above
general viewpoints has been current for some time among certain
mathematicians, there was lacking a complete exposition of the
whole system, free of extraneous complications. (Cf., however,
the book by Fréchet, [2] in the bibliography.)

I wish to call attention to those points of the present exposition
which are outside the above-mentioned range of ideas familiar to
the specialist. They are the following: Probability distributions
in infinite-dimensional spaces (Chapter 111, § 4) ; differentiation

and integration of mathematical expectations with respect to a

parameter (Chapter IV, § 5) ; and especially the theory of condi-
tional probabilities and conditional expectations (Chapter V).
It should be emphasized that these new problems arose, of neces-
sity, from some perfectly concrete physical problems.?

' Cf., e.g., the paper by M. Leontovich quoted in footnote 6 on p. 46; also the
joint paper by the author and M. Leontovich, Zur Statistik der kontinuier-.
lichen Systeme und des zeitlichen Verlaufes der physikalischen Vorgdnge.
Phys. Jour. of the USSR, Vol. 3, 1933, pp. 35-63. ' '
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vi Preface

The sixth chapter contains a survey, without proofs, of some
results of A. Khinchine and the author of the limitations on the
applicability of the ordinary and of the strong law of large num-
bers. The bibliography cqntains some recent works which should
be of interest from the point of view of the foundations of the
subject.

I wish to express my warm thanks to Mr. Khinchine, who
has read carefully the whole manuscript and proposed several
improvements.

Kljasma near Moscow, Easter 1933.

A. Kolmogorov
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Chapter I

ELEMENTARY THEORY OF PROBABILITY

We define as elementary theory of probability that part of
the theory in which we have to deal with probabilities of only a
finite number of events. The theorems which we derive here can
be applied also to the problems connected with an infinite number
of random events. However, when the latter are studied, essen-
tially new principles are used. Therefore the only axiom of the
mathematical theory of probability which deals particularly with
the case of an infinite number of random events is not introduced
until the beginning of Chapter II (Axiom VI).

The theory of probability, as a mathematical discipline, can
and should be developed from axioms in exactly the same way
as Geometry and Algebra. This means that after we have defined
the elements to be studied and their basic relations, and have
stated the axioms by which these relations are to be governed,
all further exposition must be based exclusively on these axioms,
independent of the usual concrete meaning of these elements and
their relations.

In accordance with the above, in § 1 the concept of a field of
probabilities is defined as a system of sets which satisfies certain

conditions. What the elements of this set represent is of no im-

portance in the purely mathematical development of the theory
of probability (cf. the introduction of basic geometric concepts
in the Foundations of Geometry by Hilbert, or the definitions of
groups, rings and fields in abstract algebra).

Every axiomatic (abstract) theory admits, as is well known,
of an unlimited number of concrete interpretations besides those
from which it was derived. Thus we find applications in fields of
science which have no relation to the concepts of random event
and of probability in the precise meaning of these words.

The postulational basis of the theory of probability can be
established by different methods in respect to the selection of
axioms as well as in the selection of basic concepts and relations.
However, if our aim is to achi_elve the utmost simplicity both in




2 I. Elementary Theory of Probability

the system of axioms and in the further development of the
theory, then the postulational concepts of a random event and
its probability seem the most suitable. There are other postula-
tional systems of the theory of probability, particularly those in
which the concept of probability is not treated as one of the basic
concepts, but is itself expressed by means of other concepts.!
However, in that case, the aim is different, namely, to tie up as
closely as possible the mathematical theory with the empirical
development of the theory of probability.

§ 1. Axioms?

Let X be a collection of elements ¢, », ¢, . . ., which we shall call
elementary events, and § a set of subsets of E; the elements of
the set § will be called random events.

1. & is a field? of sets.
1I. & contains the set E.
ITI. To each set A in § is assigned a non-negative real number
P(A). This number P(A) is called the probability of the event A.
IV. P(FE) equals 1.
V. If A and B have no element in common, then

P(A+B)=P(A) +P(B)

A system of sets, §, together with a definite assignment of
numbers P(A), satisfying Axioms I-V, is called a field of prob-
ability.

Our system of Axioms I-V is consistent. This is proved by the
following example. Let E consist of the single element ¢ and let §
consist of E and the null set 0. P(E) is then set equal to 1 and
P(0) equals 0.

* For example, R. von Mises[1]and [2] and S. Bernstein [1].

* The readér who wishes from the outset to give a conerete meaning to the
following axioms, is referred to § 2.

' Cf. HAUSDORFF, Mengenlehre, 1927, p. 78. A system of sets is called a field
if the sum, product, and difference of two sets of the system also belong to the
same system. Every non-empty field contains the null set 0. Using Hausdorff’s
notation, we designate the product of A and B by AB; the sum by A + B in
the case where AB=0; and in the general case by A + B; the difference of
A and B by A-B. The set E~ A, which is the complement of A, will be denoted
by A. We shall assume that the reader is familiar with the fundamental rules
of operations of sets and their sums, products, and differences. All subsets
of § will be designated by Latin capitals.

g e e e e e

§ 2. The Relation to Experimental Data 3

Our system of axioms is not, however, complete, for in various
problems in the theory of probability different fields of proba-
bility have to be examined.

The Construction of Fields of Probability. The simplest fields
of probability are constructed as follows. We take an arbitrary
finite set £ = {¢,,&,,..., &} and an arbitrary set {f;, #5,- .- i}
of non-negative numbers with the sum p, +p. + ...+ 0= 1.
% is taken as the set of all subsets in £, and we put

P{&, & - w8y} =i + 00 + -+ Pig.

In such cases, pi, P2 . . . , Px are called the probabilities of the
elementary events &, &, ..., & or simply elementary probabili-
ties. In this way are derived all possible finite fields of probability
in which § consists of the set of all subsets of E. (The field of
probability is called finite if the set E is finite.) For further
examples see Chap. II, § 3.

§ 2. The Relation to Experimental Data*

We apply the theory of probability to the actual world of
experiments in the following manner:

1) There is assumed a complex of conditions, &, which allows
of any number of repetitions.

2) We study a definite set of events which could take place as
a result of the establishment of the conditions &. In individual
cases where the conditions are realized, the events occur, gener-
ally, in different ways. Let E be the set of all possible variants
&, &, . . . of the outcome of the given events. Some of these vari-
ants might in general not occur. We include in set E all the vari-
ants which we regard a priori as possible.

3) If the variant of the events which has actually occurred

‘ The reader who is interested in the purely mathematical development of
the theory only, need not read this section, since the work following it is based
only upon the axioms in § 1 and makes no use of the present discussion. Here
we limit ourselves to a simple explanation of how the axioms of the theory of
probability arose and disregard the deep philosophical dissertations on the
concept of ?rob'ability in the experimental world. In establishing the premises
necessary for the applicability of the theory of probability to the world of
%ﬁual e\égné,':%, the author has used, in large measure, the work of R. v. Mises,

1] pp. 21-217.




4 I. Elementary Theory of Probability

upon realization of conditions & belongs to the set 4 (defined in
any way), then we say that the event 4 has taken place.

Example: Let the complex & of conditions be the tossing of a

coin two times. The set of events mentioned in Paragraph 2)con-
sists of the fact that at each toss either a head or tail may come up.
From this it follows that only four different variants (elementary
events) are possible, namely: HH, HT, TH, TT. If the “event A”
connotes the occurrence of a repetition, then it will consist of a
happening of either of the first or fourth of the four elementary

events. In this manner, every event may be regarded as a set of
elementary events.

4) Under certain conditions, which we shall not discuss here,
we may assume that to an event 4 which may or may not occur

under conditions &, is assigned a real number P(A) which has
the following characteristics

(a) One can be practically certain that if the complex of con-
ditions & is repeated a large number of times, n, then if m be the

number of occurrences of event A, the ratio m/n will differ very
slightly from P(A4).

(b) If P(A) is very small, one can be practically certain that

when conditions & are realized only once, the event A would not
occur at all.

The Empirical Deduction of the Azioms. In general, one may
assume that the system ¥ of the observed events A B, C,...to
which are assigned definite probabilities, form a field containing
as an element the set £ (Axioms I, 11, and the first part of
I1I, postulating the existence of probabilities). It is clear that
0=m/n=1 so that the second part of Axiom III is quite natural.
For the event E, m is always equal to n, so that it is natural to
postulate P(E) =1 (Axiom 1V). If, finally, A and B are non-
intersecting (incompatible), then m = m, + m, where m, m,, m,
are respectively the number of experiments in which the events
A + B, A, and B occur. From this it follows that

m

_m my
madeeten + e

It therefore seems appropriate to postulate that P(A + B) =
P(4) + P(B) (Axiom V).

§ 3. Notes on Terminology 5

Remark 1. If two separate statements are each practicall.y
reliable, then we may say that simultaneously they are bot}} reli-
able; although the degree of reliability is somewhat lcfwergd in the
process. If, however, the number of such statements is very large,
then from the practical reliability of each, one cannot deduce any-
thing about the simultaneous correctness of all of them. ’I:herefore
from the principle stated in (a) it does not follow tha.t n a ve{'i
large number of series of n tests each, in each the ratio m/n wi
differ only slightly from P(A4).

Remark 2. To an impossible event (an emp.t_%r set) corres-
sponds, in accordance with our axioms, the probabllolty P(0) —.0 >
but the converse is not true: P(4) =0 does'not imply the im-
possibility of A. When P(4) = 0, from p-ringple (b) all we can
assert is that when the conditions & are realized but once, event
A is practically impossible. It does not at all asser't:,_ hov.ve.vgr. tlng;
in a sufficiently long series of tests the event A will not occur. n
thé other hand; one can deduce from the principle(a) rxferejy- that
when P(4) = 0 and » is very large, the ratio m/n will be very
small (it might, for example, be equal to 1/7).

§ 3. Notes on Terminology

We have defined the objects of our future st.u.d.y, random
events, as sets. However, in the theory of probability many Sf:!t-
théoretic concepts are designated by other terms. We shall give

here a brief list of such concepts.
Theory of Sets Random Events

1. A and B do not intersect, 1. Events A and B are in-

i.e., AB=0. compatible.
2. AB...N=10. 2. Events A, B, ..., N are
o incompatible.

3. Event X is defined as the
simultaneous occurrence of
events A, B,...,N.

3. AB...N=X.

A+Bi..AN=X
bAT occurrence of at least one of
the events 4, B, ..., N.

s Of. § 4. Formula (3).

4. Event X is defined as the

ST Ry o ST ko B S A

S T e A L

e
e e
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6 I. Elementary Theory of Probability

Theory of Sets
5. The complementary set

Random Events
5. The opposite event A
A. consisting of the non-occur-
ence of event A.

6. A =0.

7. A= E.

8. The system ¥ of the sets
A, A, ..., A, forms a de-
composition of the set E if
A, +A,+...+4,=E.

(This assumes that the
sets A, do not intersect,in
pairs.)

9. Bisasubsetof A: B A.

6. Event A is impossible.

7. Event 4 must occur.

8. Experiment A consists of
determining which of the
events A,, 4,, ..., A, occurs.
We therefore call 4,, 4,, ...,

A, the possible results of ex-
periment 9.

9. From the occurrence of
event B follows the inevitable
occurrence of A.

§ 4. Immediate Corollaries of the Axioms; Conditional
Probabilities ; Theorem of Bayes

From A + A = E and the Axioms IV and V it follows that

P(4) + P(4A) =1 (1)
P(A) = 1—P(4) . (2)

Since E' = 0, then, in particular,
P(0)=0 . (3)

| If A,B, ..., N are incompatible, then from Axiom V follows
the formula (the Addition Theorem)

PA+B+... + N)=P(4) + P(B)+...+ P(N). (4)
If P(A) >0, then the quotient
_ P{4ap 5
Py(B) = Py _ (5)
is defined to be the conditional probability of the event B under
the condition A.

From (5) it follows immediately that

§ 4. Immediate Corollaries of the Axioms 7
P(AB)=P(A)Ps(B) . _ (6)
And by induction we obtain the general formula (the Multi-
plication Theorem)
P(d;4;...4,) =P(A) P (4) Puya, () - - - Payay... a0 (4n) (7)
The following theorems follow easily:

P(B)=0, (8)
PAE)=1, (9)
Pu(B + C)=P,(B) + P,(C). (10)

Comparing formulae (8)—(10) with axioms III—V, we find that
the system & of sets together with the set function P,(B) (pro-
vided A is a fixed set), form a field of probability and therefore,
all the above general theorems concerning P(B) hold true for the
conditional probability P,(B) (provided the event A is fixed).
- It is also easy to see that
P(4)=1. (11)
From (6) and the analogous formula
P (AB)= P(B)Pg(4)
we obtain the important formula:
P(A)P (B _
Pa(d) = P, (12)
which contains, in essence, the Theorem of Bayes.
THE THEOREM ON TOTAL PROBABILITY: Let 4, + 4, + ... +
A, = E (this assumes that the events 4,, 4,, ..., A, are mutually
exclusive) and let X be arbitraty. Then
P(X) = P(A) Piy(X) + P(d) Py, (X) + -« + P(4,) Py (X).. (13)
Proof: |
X=AX+A4X+...+ A4.X;
using (4) we have
P(X)=P(4, X)+P(4. X)+...+ P(4, X)
and according to (6) we have at the same time
P(AX)=P(A)P, (X).

THE THEOREM OF BAYES: Let A, + 4, + ...+ A, =E and

X be arbitrary, then
P(4,) P 4,(X)

) = L @ T PG P + o T PP (1)
R T . PR




8 I. Elementary Theory of Probability

A, A, ..., A, are often called “hypotheses” and formula
(14) is considered as the probability Py (4,) of the hypothesis
A, after the occurrence of event X. [P(A;) then denotes the
a priori probability of A..]

Proof : From (12) we have

P(A4;) Pa (X
Pel = AL

To obtain the formula (14) it only remains to substitute for the
probability P(X) its value derived from (13) by applying the
theorem on total probability.

§ 5. Independence

The concept of mutual independence of two or more experi-
ments holds, in a certain sense, a central position in the theory of
probability. Indeed, as we have already seen, the theory of
probability can be regarded from the mathematical point of view
as a special application of the general theory of additive set func-

_tions. One naturally asks, how did it happen that the theory of
probability developed into a large individual science possessing
its own methods?

In order to answer this question, we must point out the spe-
cialization undergone by general problems in the theory of addi-
tive set functions when they are proposed in the theory of
probability.

The fact that our additive set function P(4) is non-negative
and satisfies the condition P(E) = 1, does not in itself cause new
difficulties. Random variables (see Chap. III) from a mathe-

matical point of view represent merely functions measurable with

respect to P(A), while their mathematical expectations are
abstract Lebesgue integrals. (This analogy was explained fully
for the first time in the work of Fréchet®.) The mere introduction
of the above concepts, therefore, would not be sufficient to pro-
duce a basis for the development of a large new theory.
Historically, the independence of experiments and random
variables represents the very mathematical concept that has given
the theory of probability its peculiar stamp. The classical work
or LaPlace, Poisson, Tchebychev, Markov, Liapounov, Mises, and

¢ See Fréchet [1] and [2].

§ 5. Independence 9

Bernstein is actually dedicated to the fundamental investigation
of series of independent random variables. Though the latest
dissertations (Markov, Bernstein and others) frequently fail to
assume complete independence, they nevertheless reveal the
necessity of introducing analogous, weaker, conditions, in order
to obtain sufficiently significant results (see in this chapter § 6,
Markov chains).

We thus see,in the concept of independence, at least the germ
of the peculiar type of problem in probability theory. In this
book, however, we shall not stress that fact, for here we are
interested mainly in the logical foundation for the specialized
investigations of the theory of probability.

In consequence, one of the most important problems in the
philosophy of the natural sciences is—in addition to the well-
known one regarding the essence of the concept of probability
itself—to make precise the premises which would make it possible
to regard any given real events as independent. This question,
however, is beyond the scope of this book. |

Let us turn to the definition of independence. Given n experi-
ments AD, A, AW, that is, n decompositions

E=A? 4 AP 4 - + AP i=1,2,...,%
of the basic set E. It is then possible to assign » = r,7,. . .7, proba-
bilities (in the general case)

Pote.tn =P(A5) 45 ... A 2 0

which are entirely arbitrary except for the single condition? that

Z qf’a_;q_,...q,.z 1 (1)

T, Fayovay

DEFINITION 1. n experiments %™, A®, .. ., A are called

mutually independent, if for any q., q» . . . , ¢. the following
equation holds true:

PlAp)d. .. AR) =P(AD)P(a?) ... P(al) . (@)

n .,

" One may construct a field of probability with arbitrary probabilities sub-
ject only to the above-mentioned conditions, as follows: E is composed of r
elements &g,4,...0n. Let the corresponding elementary probabilities be
Paigs... 000 and finally let A{i’ be the set of all &,, . ..o, for which
di=9-

T A A L S Y T IR
o . I e A T o VRS B R
R TR e TR TS S R IR i AP, P T St
= = I Ty el e N T s 2 !

B
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10 I. Elementary Threory of Probability

Among the r equations in (2), there are only r-7—7,—...-7.+
n-1 independent equations®.

THEOREM 1. If n experiments A™, A=, , ., ., A are mutu-
ally independent, then any m of them (m<mn), AW, A, ..., Y,
are also independent®.

In the case of independence we then have the equations:

P44 ... A7) = P(4?) P(4g7)... P(457)  (3)
(all 7, must be different.)

DEFINITION I1. » events 4,, A4, ..., A, are mutually indepen-

dent, if the decompositions (trials)
E=A4,+ A, (= 1,2c5:51)
are independent.

Inthiscaser, =7, = ... = r, = 2,7 = 2*; therefore, of the 2»
equations in (2) only 2"-n -1 are independent. The necessary
and sufficient conditions for the independence of the events A,, 4,,
..., A, are the following 2» - n- 1 equations*®:

P(A; As,. .. As) = P(A:) P(4s) . . .P (4, (4)
m=1,2,...,n,
1= <t < o <y =0,

All of these equations are mutually independent.
In the case n = 2 we obtain from (4) only one condition (2?-2 -

* Actually, in the case of independence, one may choose arbitrarily only
rntet ...+ #, probabilities pl) = P(4) so as to comply with the n

conditions
Zip-t.
q

Therefore, in the general case, we have r—1 degrees of freedom, but in the
case of independence only m+r-+ ...+ v,-n.

*To prove this it is sufficient to show that from the mutual independence
of n decompositions follows the mutual independence of the first n-1. Let us
assume that the equations (2) hold. Then

PG AGoss  Ap) = 2P (A0 AL. . . 4y,
Ir

=P P(43) ... P(45T) 2P (45) = P(45) P(43) ... P45, 7).
. - Q.E.D.

*® See S. N. Bernstein [1] pp. 47-57. However, the reader can easily prove
this himself (using mathematical induction). '

§ 5. Independence 11

1 = 1) for the independence of two events 4, and A,:
The system of equations (2) reduces itself, in this case, to three
equations, besides (5):
P(AA,) =P(4,)P(4)
P(A.A4;) = P(A,)P(4.)
P(4.,4,) =P(4,)P(4,)
which obviously follow from (5).1
It need hardly be remarked that from the independence of
the events A4, A., ..., A, in pairs, i.e. from the relations
P(A4) = P(A)P(4) e

it does not at all follow that when n>2 these events are inde-
pendent®?. (For that we need the existence of all equations (4).)
In introducing the concept of independence,no use was made

- of conditional probability. Our aim has been to explain as clearly

as possible,in a purely mathematical manner, the meaning of this
concept. Its applications, however, generally depend upon the
properties of certain conditional probabilities.
If we assume that all probabilities P(A4,) are positive, then
from the equations (3) it follows!s that
Pasoats ... abm-0(457) = P(457) . (6)

L /T s

From the fact that formulas (6) hold, and from the Multiplica-
tion Theorem (Formula (7), § 4), follow the formulas (2). We
obtain, therefore,

THEOREM II: A necessary and sufficient condition for inde-
pendence of experiments A, AP, , . ., A in the case of posi-

1 P'(A,H'__,-) = P(4,) — P(4;4,) = P(4;) — P(4) P(4y) = P4y {t+ — P(44)}
= P(4,) P(4,) , ete.

2 This can be shown by the following simple example (S. N. Bernstein) :
Let set E be composed of four elements§,, &,, &;, &; the corresponding elemen-
tary probabilities ps;, p:, ps, P« are each assumed to be % and

A &= {El' E’}l 'B - {51! E:}}) C = {E]) El}v
It is easy to compute that
P(A) =P(B) =P(C) = %,
P(AB)=P(BC) =P(AC) =% = (&),
P(ABC) =% # (%)’ _
“ To prove it, one must keep in mind the definition of conditional proba-
bility (Formula (5), § 4) and substitute for the probabilities of products the
products of probabilities according to formula (3).

Ay

R )




12 I. Elementary Theory of Probability

tive probabilities P(AY) is that the conditional probability of
the results A, of experiments AP under the hypothesis that
several other tests U™, YW . AW have had definite results
AB AW 4 ., 4P is equal to the absolute probability
P(4,9).

On the basis of formulas (4) we can prove in an analogous
manner the following theorem:

THEOREM III. If all probabilities P(A,) are positive, then a
necessary and sufficient condition for mutual independence of
the events A,, Ay ..., A, 18 the satisfaction of the equations

Py 45, 45, (4) = P(A4) (7)
for any pairwise different iy, i,, . . ., iy, 1.
In the case n = 2 the conditions (7) reduce to two equations:
Pai(dy) = P(4y), -
P4, (4,) = P(4,).
It is easy to see that the first equation in (8) alone is a necessary

and sufficient condition for the independence of A4, and A4, pro-
vided P(4,) > 0.

§ 6. Conditional Probabilities as Random Variables,
Markov Chains

Let % be a decomposition of the fundamental set E':
E=A+A4,+...+A4,

and x a real function of the elementary event ¢ which for every
set 4, is equal to a corresponding constant a,. z is then called a
random variable, and the sum

E(x) quG,q_P(A.Q)

is called the mathematical expectation of the variable xz. The
theory of random variables will be developed in Chaps. I1I and IV.
We shall not limit ourselves there merely to these random vari-
ables which can assume only a finite number of different values.
A random variable which for every set A, assumes the value
P4, (B), we shall call the conditional probability of the event B
after the given experiment N and shall designate it by Py(B). Two
experiments A and A are independent if, and only if,

§ 6. Conditional Probabilities as Random Variables, Markov Chains 13

Pm_u(ﬁ‘;’) == P(A?’) g=1 2, issxPga

Given any decompositions (experiments) A, A®, . ., A™, we

we shall represent by
DY | Y
the decomposition of set F into the products
AMALD LA
Experiments A®, A3, ..., A are mutually independent when
and only when
Pown g .. we=n (4") = P (A;t") y

k and ¢ being arbitrary.

DEFINITION : The sequence AWV, AR, L, A, . forms
a Markov chain if for arbitrary n and ¢

Pamae .. gn-n (4 ‘?'”) = PW.;_;;-(A;"’)_.

Thus, Markov chains form a natural generalization of se-

quences of mutually independent experiments. If we set
Pamgn (11, 1) = Pyom (A1) o om<n ,

then the basic formula of the theory of Markov chains will assume
the form:

pq-*q"(k' n) =.;p?t-ﬂm('k’m) ;’}mes(ml n)’ k'(: m < H. I (1)
If we denote the matrix |[fg.q.(m,n)|| by p(m, n), (1) can be
written as®:

p(kmn) = p(km)p(m,n) E<m<n (2)

** The necessity of these conditions follows from Theorem II, § 5; that they
are also sufficient follows immediately from the Multiplication Theorem
(Formula (7) of §4).

® For further development of the theory of Markov chains, see R. v. Mises
l;l], § 16, and B. HOSTINSKY, Méthodes générales du calcul des probabilités,
“Mém. Sci. Math,” V. 52, Paris 1931.




Chapter II

INFINITE PROBABILITY FIELDS
§ 1. Axiom of Continuity

We denote by S'G”J A, as is customary, the product of the sets
A,, (whether finite or infinite in number) and their sum by &4,,.
Only in the case of disjoint sets 4,, is the form X 4, used in:t-ead
of C”E?Am. Consequently, " |

SAp = A, + 4, + -,
2Am= A1+ Ay + -,
Dy = Ay Ay .
In all future investigations, we shall assume that besides Axioms
I-V, still another holds true: |
V1. For a decreasing sequence of events
Ay DAy D D d, e (1)
of &, for which
Ddp=0 , (2)
the following equation holds:
| lim P (4,) = 0. g 550 (3)

In the future we shall designate by probability field only a
field of probability as outlined in the first chapter, which also
satisfies Axiom VI. The fields of probability as defined in the first
chapter without Axiom VI might be called generalized fields of
probability.

If the system § of sets is finite, Axiom VI follows from Axioms
I-V. For actually, in that case there exist only a finite number
of different sets in the sequence (1). Let A, be the smallest
among them, then all sets A,,, coincide with 4, and we obtain then

14
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Akz Ak«l—-p:S;?A'u = 0,
limP(4,) =P(0) =0.

All examples of finite fields of probability, in the first chapter,
satisfy, therefore, Axiom VI. The system of Axioms I- VI then
proves to be consistent and incomplete.

For infinite fields, on the other hand, the Axiom of Continuity,
VI, proved to be independent of Axioms I - V. Since the new axiom
is essential for infinite fields of probability only, it is almost im-
possible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I-V in § 2 of the first chapter.
For, in describing any observable random process we can obtain
only finite fields of probability. Infinite fields of probability occur
only as idealized models of real random processes. We limit our-
selves, arbitrarily, to only those models which satisfy Axziom VI.
This limitation has been found expedient in researches of the
most diverse sort.

GENERALIZED ADDITION THEOREM : If 4,, Ay, ..., Ay, ... and
A belong to ¥, then from

follows the equation -
P(A) = D'P(4,). (5)
Proof : Let Ro=34, .
m>n
Then, obviously ? (R,) =0,

and, therefore, according to Axiom VI
lim P(R,) =0 nsoo . (6)
On the other hand, by the addition theorem
P(A) =P(4,) +P(4,) +...+P(4,) + P(R,). (7)
From (6) and (7) we immediately obtain (5).

We have shown, then, that the probability P(A) 18 a com-
pletely additive set function on §. Conversely, Axioms V and VI
hold true for every completely additive set function defined on
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any field §.* We can, therefore, define the concept of a field of
probability in the following way: Let E be an arbitrary set, § a
field of subsets of E, containing E, and P(A) a non-negative com-~

pletely additive set function defined on §,; the field ¥ together

with the set function P(A) forms a field of probability.
A COVERING THEOREM: If A, A, 4,, ..., A,, ... belong to §

and
| AcGd, , (8)
then
P(d) = ZP(4,). (9)
Proof : "

A=A468(4,) = AA, + A4, — A 4) + A4, — A4, — 43 4) + -,
P(4) = P(AA4,) + P{A(4y — A, 4)} + -+ S P(4y) + P(d) + ---.

§ 2. Borel Fields of Probability

The field § is called a Borel field, if all countable sums2, 4n
of the sets A, from § belong to §. Borel fields are also called com-
pletely additive systems of sets. From the formula

€ Ay = Ay + (dy — A, 4)) + (A3 — Agdy — A3 4y) + - (1)

we can deduce that a Borel field contains also all the sums & 4,
]

composed of a countable number of sets 4, belonging to it. From
the formula

@A,.=E—cc5,4',, (2)

the same can be said for the product of sets.

A field of probability is a Borel field of probability if the
corresponding field & is a Borel field. Only in the case of Borel
fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability. We
shall now prove that we may limit ourselves to the investigation
of Borel fields of probability. This will follow from the so-called
extension theorem, to which we shall now turn.

Given a field of probability (&, P). As is known?, there exists
a smallest Borel field B containing §. And we have the

* See, for éxamsle, 0. NixopyYM, Sur une géneralisation des intégrales de
M. J. Radon, Fund. Math, v, 15, 1930, p. 136. '

1 HAUSDORFF, Mengenlehre, 1927, p. 85.
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EXTENSION THEOREM : [t is always possible to extend a non-
negative completely additive set function P(A), defined in §,
to all sets of B without losing either of its properties (non-
negativeness and complete additivity) and this can be dome in
only one way.

The extended field B¥ forms with the extended set func-
tion P(A) a field of probability (B, P). This field of probability
(Bg, P) we shall call the Borel extension of the field (§, P)

The proof of this theorem, which belongs to the theory of
additive set functions and which sometimes appears in other
forms, can be given as follows:

Let A be any subset of E ; we shall denote by P*(A4) the lower
limit of the sums

>P(A4,)
for all coverings '
Ac G4,

n

of the set A by a finite or countable number of sets A, of ¥. It is
easy to prove that P*(A) is then an outer measure in the
Carathéodory sense’. In accordance with the Covering Theorem
(8§ 1), P*(A) coincides with P(A4) for all sets of §. It can be fur-
ther shown that all sets of § are measurable in the Carathéodory
sense. Since all measurable sets form a Borel field, all sets of B%
are consequently measurable. The set function P*(A4) is, there-
fore, completely additive on BE, and on B{ we may set

P(A) = P*(A).

We have thus shown the existence of the extension. The unique-
ness of this extension follows immediately from the minimal
property of the field By.

Remark: Even if the sets (events) A4 of ¥ can be interpreted
as actual and (perhaps only approximately) observable events,
it does not, of course, follow from this that the sets of the extended
field By reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability
(¥, P) may be regarded as the image (idealized, however) of

* CARATHEODORY, Vorlesungen iiber reelle Funktionen, pp.237-258. (New
York, Chelsea Publishing Company).
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actual random events, the extended field of probability (BF, P)
will still remain merely a mathematical structure.

Thus sets of B§ are generally merely ideal events to which
nothing corresponds in the outside world. However, if reasoning
which utilizes the probabilities of such ideal events leads us to a
determination of the probability of an actual event of &, then,
from an empirical point of view also, this determination will
automatically fail to be contradictory.

§ 3. Examples of Infinite Fields of Probability

I. In §1 of the first chapter, we have constructed various
finite probability fields.

Let now E = {{,, &, ..., &, ...} be a countable set, and let ¥
coincide with the aggregate of the subsets of E.

All possible probability fields with such an aggregate & are
obtained in the following manner:

We take a sequence of non-negative numbers p,, such that

Pr+pt+. Pt ...=1
and for each set A put
P(A) = X'Pu.

where the summation 3’ extends to all the indices » for which
é» belongs to A. These fields of probability are obviously Borel
fields.

II. In this example, we shall assume that E represents the
real number axis. At first, let § be formed of all possible finite
sums of half-open intervals [a; b) = {a =& < b} (taking into
consideration not only the proper intervals, with finite ¢ and b,
but also the improper intervals [- oo; a), [a; + oo) and [—o0;
+o00)). & is then a field. By means of the extension theorem, how-
ever, each field of probability on § can be extended to a similar
field on B§. The system of sets B is, therefore, in our case
nothing but the system of all Borel point sets on a line. Let us
turn now to the following case.

ITI. Again suppose E to be the real number axis, while & is
composed of all Borel point sets of this line. In order to construct
a field of probability with the given field §, it is sufficient to
define an arbitrary non-negative completely additive set-funection

§ 3. Examples of Infinite Fields of Probability 19

P(A) on § which satisfies the condition P(E) = 1. As is well
known? such a function is uniquely determined by its values

Pl~o0; 2) = F(2) (1)

for the special intervals [~ co; ). The function F (2) is called the
distribution function of ¢. Further on (Chap. III, § 2) we shall
shown that F'(z) is non-decreasing, continuous on the left, and
has the following limiting values:
lim F(x) = F(—o) =0, lian(_x)=F(+oo) =1, (2)
T ~» —o00 % —» 00
Conversely, if a given function F(z) satisfies these conditions,
then it always determines a non-negative completely additive set-
function P(A) for which P(E) = 1#
IV. Let us now consider the basic set £ as an n-dimensional
Euclidian space R+, i.e, the set of all ordered n-tuples ¢ = { x,, 2.,
.., &y} of real numbers. Let § consist, in this case, of all Borel
to that used in Example II, we need not investigate narrower sys-
tems of sets, for example the systems of n-dimensional intervals.
The role of probability function P(A) will be played here,
as always, by any non-negative and completely additive set-
function defined on § and satisfying the condition P(E) = 1. Such
a set-function is determined uniquely if we assign its values

PLusar...an) = Flay, @, -+ a2) (3)

for the special sets L,,,...c., Where L,, ., represents the
aggregate of all ¢ for which z;<a, (i=1,2,..., n).

For our function F (a,, a., . . ., a,) we may choose any function
which for each variable is non-decreasing and continuous on the
left, and which satisfies the following conditions:

m Flay, ag, 000 Qn) = FlBgy 0+ oy Bigo. — 00, By gy a0 y) =0,
a; —» —oo 1.-——“-1,_2,.._.,?4 4)
lim F(a,, a,,...,a,) = F(400, 400, ..., 4o0) =1.
n
Z: (_'1)!'-“'4--"4-‘"}‘—(“1 &6 le—Ep Cppev s Bn — ExCy) =0,
l.'="-0.-‘1.' c‘. >O, 1':1,2,3’.----.’!;-

?Cf., for example, LEBESGUE, Legons sur Uintégration, 1928, p. 152-156,
* See the previous note.

*For a definition of Borel sets in R see HAUSDORFF, M engenlehre, 1927,
pp. 177-181.
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F(a, @, ..., a,) is called the distribution function of the vari-
ables i, s, <« - § Bae

The investigation of fields of probability of the above type
is sufficient for all classical problems in the theory of probability®.
In particular, a probability function in R* can be defined thus:

We take any non-negative point function f(z,, z,, . . ., z,)
defined in R*, such that

+oo oo 4o

f f...f_;‘('xl,xg,...,x,,)dxxdxz...,.dxﬂ:'l

— o0 — o

and set
P{4) = fj - .Aj_'f(xl,xz, ey ) A%y dXg ... dx, . (5)

f(xy, %z ..., x,) is, in this case, the probability density at the
point (z:, %2, - .+, ,) (cf. Chap. I1I; § 2).

Another type of probability function in R* is obtained in the
following manner: Let {&} be a sequence of points of R», and
let {p:} be a sequence of non-negative real numbers, such that

> p: = 1; we then set, as we did in Example I,

P(A) =2 p,

where the summation 2 extends over all indices ¢ for which ¢
belongs to A. The two types of probability functions in R* men-
tioned here do not exhaust all possibilities, but are usually con-
sidered sufficient for applications of the theory of probability.
Nevertheless, we can imagine problems of interest for applica-
tions outside of this classical region in which elementary events
are defined by means of an infinite number of coordinates. The
corresponding fields of probability we shall study more closely
after introducing several concepts needed for this purpose. (Cf.
Chap. 111, § 3).

¢ Cf., for example, R. v. M1sEs [1], pp. 13-19. Here the existence of proba-
bilities for ‘““all practically possible’” sets of an n-dimensional space is
required.

Chapter 111

RANDOM VARIABLES

§ 1. Probability Functions

Given a mapping of the set E into a set E’ consisting of any
type of elements, i.e., a single-valued function u(¢) defined on E,
whose values belong to E’. To each subset A’ of E’ we shall put
into correspondence, as its pre-image in E, the set 4 (A’) of all
elements of £ which map onto elements of A’. Let §* be the
system of all subsets A’ of E’, whose pre-images belong to the
field §. §* will then also be a field. If § happens to be a Borel
field, the same will be true of F™. We now set

PW(A) =P {u*(4)}. h

Since this set-function P®), defined on ¥, satisfies with respect
to the field F® all of our Axioms I- VI, it represents a proba-
bility function on ). Before turning to the proof of all the facts
just stated, we shall formulate the following definition.

DEFINITION. Given a single-valued function #(¢) of a random
event & The function P® (A"), defined by (1), is then called the
probability function of wu.

Remark 1: In studying fields of probability (&, P), we call the
function P(A) simply the probability function, but P (A’) is
called the probability function of %. In the case u(¢) = & P@ (A7)
coincides with P(4).

Remark 2: The event w*(A’) consists of the fact that u(£)
belongs to A’. Therefore, P® (A’) is the probability of u(£)c A"

We still have to prove the above-mentioned properties of F™
and P®, They follow, however, from a single fact, namely:

" LEMMA. The sum, product, and difference of any pre-image
sets u(A’) are the pre-images of the corresponding sums, prod-
ucts, and differences of the original sets A’.

The proof of this lemma is left for the reader.

21
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Let A’ and B’ be two sets of §®), Their pre-images A and B
belong then to §. Since § is a field, the sets AB, A + B, and A - B.
also belong to & ; but these sets are the pre-images of the sets A’B’,
A’ + B’, and A’ - B’, which thus belong to §®. This proves that
F* is a field. In the same manner it can be shown that if % is a
Borel field, so is §®.

Furthermore, it is clear that

P@(E’) = P{u-Y(E)} = P(E) =1.
That P® is always non-negative, is self-evident. It remains only
to be shown, therefore, that P® is completely additive (cf. the
end of § 1, Chap. II).

Let us assume that the sets A’,, and therefore their pre-images
wt(A’,), are disjoint. It follows that

PO(S 43) = P ! (T )} = P{Su~(4p)}
=ZP{u (4} = S PO(4)

which proves the complete additivity of P®o,

In conclusion let us also note the following. Let u,(£) be a
function mapping E on E’, and %,(¢') be another function, map-
ping E’ on E”. The product function u,u, (¢) maps F on E”. We
shall now study the probability functions P*(4’) and P® (A")
for the functions u,(¢) and u (&) = w.u,(£). It is easy to show
that these two probability functions are connected by the follow-
ing relation:

P (4") = Pw (a5t (4")}. (2)

§ 2. Definition of Random Variables and of
Distribution Functions

DEFINITION. A real single-valued function x(4), defined on the
basic set E, is called a random variable if for each choice of a real
number a the set {# < a} of all ¢ for which the inequality 2 <a
holds true, belongs to the system of sets . '

This function x (¢) maps the basic set E into the set R* of all
real numbers. This function determines, as in § 1, a field = of
subsets of the set R!'. We may formulate our definition of random
variable in this manner: A real function z(¢) is a random variable

if and only if §® contains every interval of the form (-oo; a).

§ 2. Definition of Random Variables and of Distribution Functions 23

Since F* is a field, then along with the intervals (-oc; a) it
contains all possible finite sums of half-open intervals [a; b). If
our field of probability is a Borel field, then § and §) are Borel
fields; therefore, in this case F® contains all Borel sets of R.

The probability function of a random variable we shall denote
in the future by P (A’). It is defined for all sets of the field ).
In particular, for the most important case, the Borel field of
probability, P*) is defined for all Borel sets of R!.

DEFINITION. The function

F@® (a) =P® (~o0,a) =P {x<a},

where —oo and + oo are allowable values of a, is called the distri-
bution function of the random variable x.

From the definition it follows at once that
F®(—o0) =0, F)(4+00) =1 . (1)

The probability of the realization of both inequalities e=x < b,
is obviously given by the formula

P{xC [a; b)} = FO(b) — F@ (a) (2)
From this, we have, for a<b,
F@® (a) =F® (b)

which means that F*) (a) is a non-decreasing function. Now let
<< . ..<t, < ... < b;then

?{xt: [an; b)} =0
Therefore, in accordance with the continuity axiom,
F@ () — F(a,) = P{x C [a,, b)}

approaches zero asn— 4 oc. From this it is clear that F® (a) s
continuous on the left.

In an analogous way we can prove the formulae:
lim F®) (g) = F®(-0) =0, a=—+—o0, (3)
lim F®(a) = F®O( +o0) =1, a ~—+ + oo. (4)

If the field of probability (&, P) is a Borel field, the values of
the probability function P*)(A) for all Borel sets A of R* are
uniquely determined by knowledge of the distribution function
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F® (a) (cf. § 3, III in Chap. II). Since our main interest lies in
these values of P (A), the distribution function plays a most
significant role in all our future work.

If the distribution function F¢) (a) is differentiable, then we
call its derivative with respect to a,

FO(a) = 4= F®(a) »
the probability density of x at the point a.

If also F® () = | f)(a) da for each a, then we may ex-
press the proba;b_ilit_yyfunction P (A) for each Borel set A in
terms of ) (a) in the following manner:

P& (4) = [ (a) da. (5)
4
In this case we call the distribution of x continuous. And in the
general case, we write, analogously
P& (4) = [dF@(a) . (6)
‘{.

All the concepts just introduced are capable of generalization

for conditional probabilities. The set function

P‘;’ (A) L PB:(-x' c A)
is the conditional probability function of x under hypothesis B.
The non-decreasing function

Fg(a) = Pg(x < a)
is the corresponding distribution function, and, finally (in the
case where F¥(a) is differentiable)

_ d

15 (@) = == F$(a)
is the conditional probability density of « at the point a under
hypothesis B.

§ 3. Multi-dimensional Distribution Functions

Let now n random variables i, @z, . . . , %, be given. The point
z = (&, % . . ., T,) Of the n-dimensional space R* is a function
of the elementary event ¢ Therefore, according to the general
rules in §1, we have a field g - consisting of
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subsets of space R* and a probability function P® s -...2w (4 )
defined on . This probability function is called the n-dimensional
probebility function of the random vasiables zi, z,, . . . , x,.

As follows directly from the definition of a random variable,
the field §’ contains, for each choiceof fand a; (1 =1, 2,..., n),
the set of all points in R* for which z; < a,. Therefore § also con-
tains the intersection of the above sets, i.e. the set L, ,, . ..
of all points of R* for which all the inequalities z; < a; hold
(i=1,2,...,m)% |

If we now denote as the n-dimensional half-open interval
[Ea'ly a2s L | a’ﬂ; bl_}.b?r LE AL | bn) b

the set of all points in R*, for which a;<z,< b,, then we see at
once that each such interval belongs to the field { since

(a1, @y, ..., i By, B, ..., D)
== Ly vyer.tn — Laybs...bn — Lbasty...8a — *** — Lty buran-

The Borel extension of the system of all n-dimensional half-
open intervals consists of all Borel sets in R». From this it follows
that in the case of a Borel field of probability,the field § contains
all the Borel sets in the space R*.

THEOREM : In the case of a Borel field of probability each Borel
function x = f(x1, 2 . . ., x,) Of @ finite number of random vari-
ables xy, %,, . . ., T, 18 also a random variable.

All we need to prove this is to point out that the set of all
points (z;, 2,, .. ., z,) in R* for which z = f(z, 2, .. ., Zn) <a,
is a Borel set. In particular, all finite sums and products of random
variables are also random variables.

DEFINITION : The function

F(’l_, Tayoeey 3'!!} (al’- a! s ey “ﬂ) = P(:h_x‘lt veny Tm) (La! PR u”)_

is called the n-dimensional distribution. function of the random
variables z,, %, . . . , Ty

As in the one-dimensional case, we prove that the n-dimensional
distribution function F@#u%. - (q q, ...,a,) is non-decreas-

ing and continuous on the left in each variable. In analogy to

*The a; may also assume the infinite values 300 ,
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lim F(ay, ag, - -, @n) = F(ay, ..., 4g_y, —00, @4y, - -+, Gn) =0, (7)
8 —» —co
lim F(a,, ag, - - -, @) = F(+00, 400, ..., +-00) = 1. (8)
8 —> +oo, 8 —> 400, ..., G >+

The distribution function F@:# ...z gives directly the values
of P@En -2 only for the special setS Ly, ... a. 1f our field, how-
ever, is a Borel field, then? Ptz #s, .. ) 15 uniquely determined for

all Borel sets in R» by kmowledge of the distribution function
F{Iu F 7Y 1)

If there exists the derivative
4

f(a.l’ "-'12_- CR R aﬂ) v 601 {)“_2 - aan

F(Ihxh vees Xn) (gl' Ay, + s a’l‘l)

we call this derivative the n-dimensional probability dengsity of

the random variables ,, Zs, . . - , &, at the point @, @z,. . . ; Tn. If
also for every point (a,, @z - . -, Qn)

J GE T R LY (f':“z-- .. ””) =[ j .. j f(a].az‘ R d“l daz . da’“.
then the distribution of ;, ®», . . . , . is called continuous. For

every Borel set Ac R, we have the equality
Pz -2 (A) =[[ ... [[(ay, @y, - - o, Gn)dayday . .. da, . (9)
A=

In closing this section we shall make one more remark about
the relationships between the various probability functions and
distribution functions. i

Given the substitution

_ 1o 24 souy B
Se=} "~ ;
zji f'ﬁ; L LY ""u :

and let rgdenote the transformation i
X = % (k=1,2,...,n)
of space R* into itself. It is then obvious that
PlFioZiv = %ia) (4) = P2, -2 {rg' (A)}. (10)

Now let 2/ = pi(z) be the “projection” of the space R* on the
space Rt (k< n), so that the point (2, %5, ..., x,) is mappedonto
the point (#,, 2 - - ., Tx) - Then, as a result of Formula (2) in§ 1,

10f. §3, IV in the Second Chapter.
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P& s, a0 (M) = Pt oz [V A)) (11)

For the corresponding distribution functions, we obtain from
(10) and (11) the equations:

F(zil'ri:’““wiq) (aiu ai:j v oy a!n) = I;‘(I“Ih --.,-‘Cn) (al’ az' ! a") : (12)
F{;rh:r,, ...,:l?j.—)(al, aﬂ‘ '__’ak) — F(»tl.f‘:;--_-,ln)(al’ con, Ap, —i—m, ..-,+00).(1.3)

§ 4. Probabilities in Infinite-dimensional Spaces

In § 3 of the second chapter we have seen how to construct
various fields of probability common in the theory of probability.
We can imagine, however, interesting problems in which the
elementary events are defined by means of an infinite number

of coordinates. Let us take a set M of indices x (indexing set) of

arbitrary cardinality m . The totality of all systems
& ={x.}

of real numbers x,, where p runs through the entire set M, we
shall call the space R¥ (in order to define an element ¢ in space
RM, we must put each element n in set M in correspondence with
a real number x, or, equivalently, assign a real single-valued
function x, of the element ., defined on M)>. If the set M consists
of the first #» natural numbers 1, 2, . . ., n, then RM is the ordinary
n-dimensional space R». If we choose for the set M all real num-
bers R!, then the corresponding space RM = R¥ will consist of
all real functions
; §(p) = x4

of the real variable ..

We now take the set R™ (with an arbitrary set M) as the
basic set E. Let & ={x,} be an element in E; we shall denote by
Prasie... o (§) the point (x,,,%,.... %.,) of the n-dimensional
space R". A subset A of E we shall call a cylinder set if it can
be represented in the form

A =tulm...ul4)

where A’ is a subset of R*. The class of all cylinder sets coincides,
therefore, with the class of all sets which can be defined by rela-
tions of the form -

* Cf. HAUSDORFF, Mengenlehre, 1927, p. 23.
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-f(x,u,r Xitgss = +» xp‘) =10 (1)

In order to determine an arbitrary cylinder set 2u, ... u(4") by
such a relation, we need only take as f a function which equals 0
on A’, but outside of A’ equals unity.

A cylinder set is @ Borel cylinder set if the corresponding set
A’ is a Borel set. All Borel cylinder sets of the space RM form a
field, which we shall henceforth denote by FM*.

The Borel extension of the field §¥ we shall denote, as always,
by BEM. Sets in BFM we shall call Borel sets of the space RM.

Later on we shall give a method of constructing and operating
with probability functions on §¥, and consequently, by means of
the Extension Theorem, on BFM also. We obtain in this manner
fields of probability sufficient for all purposes in the case that the
set M is denumerable. We can therefore handle all questions
touching upon a denumerable sequence of random variables. But
if M is not denumerable, many simple and interesting subsets of
RM™ remain outside of BFM. For example, the set of all elements ¢
for which x, remains smaller than a fixed constant for all
indices p, does not belong to the system BFM if the set M is
non-denumerable.

It is therefore desirable to try whenever possible to put each
problem in such a form that the space of all elementary events ¢
has only a denumerable set of coordinates.

Let a probability function P(A4) be defined on §¥. We may
then regard every coordinate x, of the elementary event £
as a random variable. In consequence, every finite group
(%uy» Zpys + -+ %) Of these coordinates has an n-dimensional
probability function P,,,... ..(4) and a corresponding distribu-

* From the above it follows that Borel cylinder sets are Borel sets definable
by relations of type (1). Now let A and B be two Borel eylinder sets defined
by the relations

f(x?‘l’ Fpgr <o o xﬁ‘u_) =0, g("il.l E.2 IR xlm) =
Then we can define the sets A + B, AB, and A - B respectively by the relations
f-g=0,
P + g’ =0,
"+ w)=0,

where (3} =0 for x40 and @(0) =1 If f and g are Borel functions, so
also are f-g, F+g* and f+ w(g); therefore, A+ B, AB and A-B are Borel
cylinder sets. Thus we have shown that the system of sets T¥ is a field.
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tion function F, . . ..(¢:, @ . .

every Borel cylinder set

., @,). It is obvious that for

A = f);:‘l-"ﬂﬂ (A') ’
the following equation holds:
P4) =Py sy u ),

where A’ is a Borel set of R* In this manner, the probability
function P is uniquely determined on the field § of all cylinder sets
by means of the values of all finite probability functions Pu,u...u»
for all Borel sets of the corresponding spaces R». However, for
Borel sets, the values of the probability functions P, ,,...., are
uniquely determined by means of the corresponding distribution
functions. We have thus proved the following theorem:

The set of all finite-dimensional distribution functions
PR uniquely determines the probability function P(A) for
oll sets in M. If P(A) is defined on §M, then (according to the
extension theorem) it is uniquely determined on BFM by the
values of the distribution functionsF, .. .. ux-

We may now ask the following. Under what conditions does a
system of distribution functions F, ,,. ... given a prior: define
a field of probability on §* (and, consequently, on BgFH) ?

We must first note that every distribution function F, , ..
must satisfy the conditions given in § 3, III of the second chap-
ter; indeed this is contained in the very concept of distribution
function. Besides, as a result of formulas (13) and (14) in § 2,
we have also the following relations:

Fﬂl%...ﬁn(ailr Rlyrvry By 22 By onea (i By womy Fg)'y 2)

Fm.tu....m.(al. Az, - ., Q) =F}61§t,...pn(di, Ay, - oesOp, +00, ..., + oo}, (3)
.1’ 2, , : . . .

where k& < n and (’.1’ by oon :') is an arbitrary permutation.

These necessary conditions prove also to be sufficient, as will
appear from the following theorem.

FUNDAMENTAL THEOREM: Every system of distribution func-
tions F,,,,....., Sotisfying the conditions (2) and (3), defines a
probability function P(A) on M, which satisfies Axioms I - V1.
This probability function P(A) can be extended (by the exten-
sion theorem) to B{FM also.



30 1II. Random Variables

Proof. Given the distribution functions F,,,.. ... satisfying
the general conditions of Chap. II, § 3, III and also conditions (2)
and (3). Every distribution function F, ,, .. defines uniquely
a corresponding probability function P, ,, .. .. for all Borel sets
of R* (cf. § 3). We shall deal in the future only with Borel sets
of R* and with Borel cylinder sets in E.

For every cylinder set

A = p};:& en ,u,.(A’) ¥
we set

P(A) = PP:_!‘:——-.“:(A.,) . (4)

Since the same cylinder set A can be defined by various sets A’,
we must first show that formula (4) yields always the same
value for P(4).

Let (x,,x,,,...,%,) be a finite system of random variables 13
%,- Proceeding from the probability function Puwpy...na Of these [
random variables, we can, in accordance with the rules in §3,
define the probability function Py, . ..., of each subsystem
(%u; s %uy o oy %) - From equations (2) and (3) it follows that
this probability function defined according to § 8 is the same as
the function Pui wi, ... vy, given a priori. We shall now suppose that
the cylinder set A is defined by means of

A= p;‘_:ﬂi._”m(-d’)
and simultaneously by means of

— =1 ’
A= By )

L L PR

where all random variables x,, and x, belong to the system
(%uys %4y, - .., %, ) , which is obviously not an essential restriction.

< Xy,

The conditions
(o s oo ) € A
and .
(x’“n  Kigggr v x"‘:m) cA”
are equivalent. Therefore
P‘u-‘-l ‘ui' Sad -u‘ll,k (A ’) = PFI Haoes "_"” {(xﬂiﬂ I x.'ui') "y x.u_it)- o A’}
= PP"‘“' Sl {(x‘“fx’ x‘“fl """ xk‘fm) = A”} = P.'u?.lpfl R TN (A.”) g

which proves our statement concerning the uniqueness of the
definition of P(A4).
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Let us now prove that the field of probability (§*, P) satisfies
all the Axioms I - V1. Axiom I requires merely that §* be a field.
This fact has already been proven above. Moreover, for an arbi-
trary p:

E = p-1(RY),
P(E) =P, (R) =1,

which proves that Axioms IT and IV apply in this case. Finally,
from the definition of P(A4) it follows at once that P(4) is non-
negative (Axiom III).

It is only slightly more complicated to prove that Axiom V
is also satisfied. In order to do so, we investigatetwo cylinder sets

A= bl )
and B =1 B).

Fojy Bogy =< #fm(

We shall assume that all variables x,, and x,, belong to one inclu-
sive finite system (x,,x,,... %,) . If the sets A and B do not
intersect, the relations _ ;
(Fug,> Hugyr - -r Xy ) = 4
(g i o B
are incompatible. Therefore

and

P(4 + B) = P,,i_,,,____,_“,{('xﬂil, Kpgyr oo x,,“) cA”
Of (% By - o0 ¥y, ) © B

= PPL;&:_-..;;,,{(IF':I, Kppr ooy xﬂik) < A’}

which concludes our proof.
Only Axiom VI remains. Let
A4, D 4,0 D4y e

be a decreasing sequence of cylinder sets satisfying the condition
limP(4,) =L > 0.

We shall prove that the product of all sets 4, is not empty. We
may assume, without essentially restricting the problem, that in
the definition of the first n cylinder sets A;, only the first n co-
ordinates x,, in the sequence

Kivir: Bign: wove Tpgy « vo
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oceur, i.e.

‘-4".‘ = ﬁ;llp. oo fti (B") .

For brevity we set
P!‘x Hy ..o F’R(‘B) = PN(B);
then, obviously

In each set B, it is possible to find a closed bounded set U, such

that .

Pn(Bﬂ. - Un) é ‘ie; .

From this inequality we have for the set
V= P#nlm ( Un)

the inequality

P(A.-V.) = (5)

2" :
Let, morever,

W,=V,V,...V,.
From (5) it follows that
P(A,-W,) =e.
Since W,cV, <4, , it follows that
P(W,) =P(d,) ~e=L —c¢.

If ¢ is sufficiently small, P(W,) > 0 and W, is not empty. We
shall now choose in each set W, a point ¢ with the coordinates
z, Every point ¢+2), p =0, 1, 2, . . ., belongs to the set V,;
therefore

(xgiﬂ!) (n+p) x(n+p)) 25

."t

fiy ,“l fin Q("+F}:) < Uﬂ. -

Since the sets U, are bounded we may (by' the diagonal method)
choose from the sequence {§™} a subsequence

Eg(ﬂ_l} , :E.:U.'h) y e End

for which the corresponding coordinates xj};‘? tend for any k to
a definite limit x,. Let, finally, ¢ be a point in set E with the

coordinates
x'ﬂ; = X

xp:()l #:i:!‘k' k'.ﬂ’l,ﬁ,},. .
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As the limit of the sequence (*{*, 2{", ..., x{*),1=1,2,3, ..., the
point (x,, &, ..., ) belongs to the set Uk Therefore, ¢ belongs to

Ak C V]; -1 k(U‘t)

fxfta.
for any k and therefore to the product
X

§ 5. Equivalent Random Variables; Various Kinds of Convergence

Starting with this paragraph, we deal exclusively with Borel
fields of probability. As we have already explained in § 2 of the
second chapter, this does not constitute any essential restriction
on our investigations.

Two random variables x and y are called equwa,lem if the

probability of the relation z 4=y is equal to zero. It is obvious that |

two equivalent random variables have the same probability func-
tion:

P& (A) = PO (A).

Therefore, the distribution functions F(*} and F are also

identical. In many problems in the theory of probability we may

substitute for any random variable any equivalent variable.
Now let

Liy Ly o v vy Ly oo (1)

be a sequence of random variables. Let us study the set A of all

elementary events ¢ for which the sequence (1) converges. If we

denote by A% the sets of £ for which all the following inequalities

hold 1
[Znar — %a| < o E=1,2,...,p
then we obtain at once
A =D6DAT . (2)
mnp

According to § 3, the set A always belongs to the field §. The

relation (2) shows that 4, too, belongs to §. We may, therefore,

speak of the probability of convergence of a sequence of random
variables,for it always has a perfectly definite meaning.

Now let the probability P(A) of the convergence set A be
equal to unity. We may then state that the sequence (1) con-

verges with the probability one to a random variable z, where
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the random variable z is uniquely defined except for equivalence.
To determine such a random variable we set

= limaz, N =+ 00

on A, and z = 0 outside of A. We have to show that z is a random
variable, in other words, that the set A (a) of the elements ¢ for
which z < a, belongs to §. But

A(a) =4 ? ?{x}l-f--? < a} :
in case a = 0,and

Afa) = 4G Dfwnsp < a}+ 4

in the opposite case, from which our statement follows at once.

If the probability of convergence of the sequence (1) to z
equals one, then we say that the sequence (1) converges almost
surely to x. However, for the theory of probability, another con-
ception of convergence is possibly more important.

DEFINITION. The sequence ,, 3, . . . , Za, . . . of random vari-
ables converges in probability (converge en probabilité) to the
random variable z, if for any € > 0, the probability

Pl — 2| > ¢}
tends toward zero as n~—» o 3,

I. If the sequence (1) converges in probability to x and also
to x’, then x and =’ are equivalent. In fact

P{lx-—x"}}n}ép{[x"—ﬂ>2_1”_;}+P-{|xn__xp.‘>§%§};

since the last probabilities are as small as we please for a suffici-
ently large n it follows that

P{]x—x‘[}i}:g
and we obtain at once that

Ple )= J'P{lx—x|> L =o.

I1. If the sequence (1) almost surely converges to x, then it

® This concept is due to Bernoulli; its completely general treatment was
introduced by E. E. Slutsky (see [1]). '
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also converges to x in probability. Let A be the convergence set
of the sequence (1) ; then
1 =P(A) < limP{%p,p, — x| <&, =0,1,2,...} = limP{|x, — x| <¢},

> 0o 11 % oo
from which the convergence in probability follows.

II1. For the convergence in probability of the sequence (1)
the following condition is both necessary and sufficient: For any
¢ > 0 there exists an n such that,for every p > 0, the following
nequality holds:

P{l#nsp — %l > e} <&

Let F.(a), F.(a), ..., F.(a), ..., F(a) be the distribution
functions of the random variables z,, 2, . . . , &n, . . . , &. If the
sequence z, converges in probability to z, the distribution func-
tion F(a) is uniquely determined by knowledge of the functions
F,(a). We have, in fact,

THEOREM : If the sequence X, Ty, . - . o Lny . . - CONVETQES 1N
probability to z, the corresponding sequence of distribution func--
tions F.(a) converges at each point of continuity of F(a) to the
distribution function F (a) of x.

That F (e) is really determined by the F,(a) follows from the
fact that F' (a), being a monotone function, continuous on the left,
is uniquely determined by its values at the points of continuity®. To
prove the theorem we assume that F' is continuous at the point
a. Let @’ < a; then in case z < @/, z, = a it is necessary that

| ®s— x | > a—a’. Therefore
limP(x<ad, x,=a) =0,

F(d) =P (<) P, <a) +P(r <, 2,2 a) = Fy (a) + P(x<a’, 52 0),
F(a) = liminfF,(a) +1limP(x<d’, x,=a),
F(a’) < liminfF,(a). (3)
In an analogous manner, we can prove that from a” > a there
follows the relation

F(a”) = lim sup F.(a) . (4)

® In fact, it has at most only a countable set of discontipuities (see LEBESGUE,
Legonas sur lintégration, 1928, p. 50. Therefore, the points of continuity are
everywhere dense, and the value of the function F'(¢) at a point of discon-
tinuity is determined as the limit of its values at the points of continuity
on its left.
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Since F'(a’) and F'(a”) converge to F(a) for ' = a and a” = a,
it follows from (3) and (4) that

IimF,(a) = F(a),

which proves our theorem.

Chapter IV

MATHEMATICAL EXPECTATIONS'

§ 1. Abstract Lebesgue Integrals

Let x be a random variable and A a set of §. Let us form, for a
positive A, the sum

k=400

S, =2 kIPRA S x < (k+1)), Ec 4}, (1)
. k= —oo i

If this series converges absolutely for every A, then as A — 0, S,

tends toward a definite limit, which is by definition the integral

[P (dE) . (2)

4

In this abstract form the concept of an integral was introduced
by Fréchet?; it is indispensable for the theory of probability.
(The reader will see in the following paragraphs that the usual
definition for the conditional mathematical expectation of the
variable # under hypothesis A4 coincides with the definition of
the integral (2) except for a constant factor)

We shall give here a brief survey of the most important
properties of the integrals of form (2). The reader will find their
proofs in every textbook on real variables, although the proofs
are usually carried out only in the case where P(A) is the Lebesgue
measure of sets in R". The extension of these proofs to the general
case does not entail any new mathematical problem; for the most
part they remain word for word the same.

I. If a random variable z is integrable on A, then it is in-
tegrable on each subset A’ of A belonging to §.

II. If x is integrable on A and A is decomposed into no

* As was stated in § 5 of the third chapter, we are considering in this, as well

as in the following chapters, Borel fields of probability only.

* FRECHET, Swur Ulintégrale d'une functionnelle étendue a un ensemble
abstriit, Bull. Soc. Math. France v. 43, 1915, p. 248.

37
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more than a countable number of non-intersecting sets A4, of %,

then [x.P'(dE-)f = foP (dE).

A n An

III. If z is integrable,| z | is also integrable, and in that case
|f *PWE)| = f |%|P(dE).
A A

IV. If in each event ¢ the inequalities 0 < y < z hold, then
along with z, ¥ is also integrable?, and in that case

Afy P(dE) ngP(dE).

V. If m < ¢ =< M where m and M are two constants, then
mP(4) = [xP(dE) = MP(4).
4
VI. If x and y are integrable, and K and L are two real con-
stants,then Kz + Ly is also integrable, and in this case

[(Kx + Ly)P(E) = K [xP(dE) + L[yP(E).
4 A

i

VII. If the series
2 [ 15l P@E)
n A
converges, then the series

2T, =
n

converges at each point of set A with the exception of a certain
set B for which P(B) = 0. If we set z = 0 everywhere except on

A - B, then
f xP(dE) = > fxn_P (dE).
n 4

4

VIIL. If x and y are equivalent (P {x 4 y}=0), then for

every set A of §

A

*TIt is assumed that y is a random variable, i.e., in the terminclogy of the

general theory of integration, measurable with respect to -

[ xP(dE) = f yP(dE). (3)
A
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IX. If (8) holds for every set A of ¥, then x and ¥ are
equivalent.

From the foregoing definition of an integral we also obtain
the following property, which is not found in the usual Lebesgue
theory. -

X. Let P,(A) and P,(4) be two probability functions defined
on the samefield §, P(4) = P,(A4) + P,(A4),and let x be integrable
on A relativeto P,(A) and P,(A). Then

[¥P@E) = [£Py@E) + [Py (@B).
4 A A
XI. EVBI}_’ bounded random variable is integrable.

§ 2. Absolute and Conditional Mathematical Expectations
Let xz be a random variable. The integral

E(z) = [«P(dE)
E

is called in the theory of probability the mathematical expectation -
of the variable z. From the properties II1,'1V, V, VI, VII, VIII,
X1, it follows that
L |E(z)| = E(|2]);
II. E(y) = E(x) if 0 = y =< x everywhere;
IIL. inf (2) =< E(x) =< sup () ;
IV. E(Kx + Ly) = KE(x) + LE(y);
V. E (Z‘ x,,) = 3'E(x,),  if the series > E(|#,]) converges;
VI. If x and y are equivalerit: then
VII. Every bounded random variable has a mathematical
expectation.

From the definition of the integral, we have

E(x) = lim > kmP{km < x < (k + 1) m}

k.-.:—m

- 1_in‘i"_'ﬁz+£°m [F((k 4 1)m) — F(km)}.
k=~ o0
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The second line is nothing more than the usual definition of the
Stieltjes integral

450

fcz dF®(a) = E(x). (1)
Formula (1) may therefore serve as a definition of the mathe-
matical expectation E(x).

Now let % be a function of the elementary event ¢ and x be a

random variable defined as a single-valued function x = z(u)
of w. Then

P{km < x < (k+ 1)m} = PO {km < x(u) < (k+ 1) m},

where P® (A4) is the probability function of u. It then follows
from the definition of the integral that

[£P(@E) = [xP@(E®)
E E
and, therefore,
E(x) = [ x(u) P¥ (dE) - (2)
Ew
where E® denotes the set of all possible values of u.
In particular, when % itself is a random variable we have

. 400
E(x) = [xP(dE) = | x(u) P (@R') = [ x(a) dF"(a). (3)
J=rem=] i)

When z (u) is continuous, the last integral in (3) is the ordinary
Stieltjes integral. We must note, however, that the integral

hoe ~

f % (@) dF® (a)
can exist even when the mathematical expectation E(x) does not.
For the existence of E(xz), it is necessary and sufficient that the
integral

“+ oo
f |%(@)| 4F® (a)
be finite*. -

If u is a point (%, %s, . . . , Us) Of the space R+ then as a result

of (2):

+Cf. V. GLIVENKO, Sur les valeurs probables de fonctions, Rend. Accad.

Lincei v. 8, 1928, pp. 480-483.

]
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E (%) :ff"'_{""("l' Uy, - .., Uy) POLB o w) (ZRY) . (4)
: Rn

We have already seen that the conditional probability Pg(A)

possesses all the properties of a probability function. The corres-
ponding integral

Ep(x) = fx Ps(dE) (5)
E
we call the conditional mathematical expectation of the random
varwble x with respect to the event B. Since

fo’B(dE) =l g

B

Ps(B) =0,

we obtain from (5) the equation
Ep(x) = f %Py (dE) = f % Pp(dE) + f % Pp(dE) = f %Py (dE) .
E B B B

We recall that in case A B,

S

P{4B) P(4
Pp(d) = B = PB)
we thus obtain

Ep(r) = P_(’B)ﬁfxp(d'ﬁ‘), (6)
[xP@E) = P(BYEy(n). (7)
B

From (6) and the equality

[xP@E) = [xP(E) + [xP(E)
B

A+B 4
we obtain at last
P(A4) Es(x) +P(B)Eg(x)

EA-I-B(x)- s P(;‘i + B) (8)
and, in particular, we have the formula
E(x) = P(4) E,(x) + P(d4) Ex(x). (9)
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§ 3. The Tchebycheff Inequality

Let f(z) be a non-negative function of a real argument z,
which for # = a never becomes smaller than b > 0. Then for any
random variable z

Plrza) = VN (1

provided the mathematical expectation E{/(x)}  exists. For,
E{f)} = [1() P@E) = [{() PWE) = bP(xz ),
E {z=a}
from which (1) follows at once.
For example, for every positive ¢,

Px=a) < =51, (@)

Now let f(x) be non-negative, even, and, for positive 2, non-
decreasing. Then for every random variable z and for any choice
of the constant a > 0 the following inequality holds

v E{f#)}
Pllx|=a) = =5~ (3)
In particular,
P(;x_E(xnga)gEL{‘f—(%}'i‘ﬂ?. (4)

Especially important is the case f(z) = x2. We then obtain from
(3) and (4)
E (+?)

Plx|=a) =5, (8)
Pz~ Em| za) s SE—FO _ 29 (6)

where
0*(x) = Efx — E(x)}?

is called the variance of the variable z. It is easy to calculate that
o*(x) = E(x)) — E()P.

If f(z) is bounded:

then a lower bound for P(|z| = a) can be found. For
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E(f(n) = [1(x) P(aE) = [(x) P(@E) + [/ (x) P(dE)
E i {z|<a} {lz|=a}
= /(@) P(|x| < a) + KP()x| 2 a) = {(a) + KP (13| 2 a)

and therefore

Plla| 2 o) = = 1@ ™
If instead of f(z) the random variable z itself is bounded,
lz| =M,
then f(z) =< f(M), and instead of (7), we have the formula
_ E(fx) — f(a)
Plxl = @) 2 =55 (8)

In the case f(z) = 2, we have from (8)

Px| o) 2 EEE (9)

§ 4. Some Criteria for Convergence
Let
Ly, Lgpeonn 5 Liwys 55 (1)
be a sequence of random variables and f (z) be a non-negative,

even, and for positive z a monotonically increasing function®.
Then the following theorems are true:

L. In order that the sequence (1) converge in probability the
following condition is sufficient: For each ¢ > 0 there exists an n
such that for every p > 0, the following inequality holds:

E {f(*psp — 20} <& . (2)
II. In order that the sequence (1) converge in probability to

the random variable z,the following condition is sufficient:

lim E{f(x, — x)} = 0. (3)

n—> 4 oo

III. If f(x) is bounded and continuous and f(0) = 0, then
conditions I and II are also necessary.

IV. If f(x) is continuous, f(0) = 0,and the totality of all

Wity Ly oy By 02505 0 18 bounded,_then conditions I and II are also
necessary.

* Therefore f(z) > 0if =+ 0.
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From II and IV, we obtain in particular
V. In order that sequence (1) converge in probability to z,
it is sufficient that
limE(z,-2)*=0 . (4)

If also the totality of all z,, 25, ..., Z,, . . .,  is bounded, then the
condition is also necessary.

For proofs of I-IV see Slutsky [1] and Fréchet [1]. How-
ever, these theorems follow almost immediately from formulas
(8) and (8) of the preceding section.

§ 5. Differentiation and Integration of Mathematical Expectations
with Respect to a Parameter

Let us put each elementary event ¢ into correspondence with a
definite real function x(¢) of a real variable t. We say that x(?)
is a random function if for every fixed ¢, the variable z(¢) is a
random variable. The question now arises,under what conditions
can the mathematical expectation sign be interchanged with the
integration and differentiation signs. The two following theorems,
though they do not exhaust the problem, can nevertheless give a
satisfactory answer to this question in many simple cases.

THEOREM 1: If the mathematical expectation E[z(t)] is finite
for any t, and x(t) 1s always differentiable for any t, while the
derivative &’ (t) of x(t) with respect to t is always less in abso-
lute value than some constant M, then

d ..
ot E(x®) = E{®).
THEOREM II: If z(t) always remains less, in absolute value,
than some constant K and is integrable in the Riemann sense, then
b b
[E(®)dt = E[ JE (-t)-dt],
a a
provided E[x(t)] is integrable in the Riemann sense.
Proof of Theorem I. Let us first note that 2’ (¢) as the limit of
the random variables

(L + k) — ()

1 1
. h=1, + X

g 2y it Rk

is also a random variable. Since z'(f) is bounded, the mathe-
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matical expectation E[z'(¢)] exists (Property VII of mathe-

matical expectation, in § 2). Let us choose a fixed ? and denote
by A the event v '
¢+ -',h_ G _ x’(t)l) T

The probability P(A) tends to zero as b — 0 for every & > 0. Since

x(t + h) — 2z(f)

holds everywhere, and moreover in the case A

x| =M

. |2 vy | e
en
lEx({—!— k}l — Ex(2) _ Ex'(t) |(_: E |.1:_(t+h) - x(r.’)-_ x’(’t)’
Ex(l) | < E[2EEA) )|
= ) By LER=20 g | 4 p(d) gy 1R =20 |

<2MP(A) +«.

We may choose the ¢ > 0 arbitrarily, and P(4) is arbitrarily
small for any sufficiently small k. Therefore

a_ o Ex(t+h)—Ex(t) .,
thx(x)_;ﬂ . = Ex

GF

which was to be proved.
Proof of Theorem II. Let

k=n
. 5 B
Se=g3 D xlt+ kb, k=222

n
k=1

h

Since S, converges to J = f xz(t) dif, we can choose for any
3

¢ >0 an N such that from n = N there follows the inequality
P(A) =P{S:i—J|>¢e<e.

If we set X
-8
5t = "1;;2 Ex(t+ kh) = E(S,),
k=1
then

|2 — E(J)| = |E(Sa — )| = E|S, — ]|
= P(A)E4|Su — J| + P(DEZ|S, — Jl < 2KP(4) + e = (2K + 1)e.
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Therefore, S% converges to E(J), from which results the equation

b
fEx(z)-d-c = limS? = E(J).

Theorem II can easily be generalized for double and triple
and higher order multiple integrals. We shall give an application
of this theorem to one example in geometric probability. Let G be a
measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event ¢ of a field
of probability a definite measurable plane region G. We shall
denote by J the area of the region G, and by P(z, y) the prob-
ability that the point (z, ¥) belongs to the region G. Then

E(J) = [[P(x,y)dxdy.
To prove this it is sufficient to note that

J=[[txydxdy,
P(xs y) = Ef(x, y) ’

where f(z,y) is the characteristic function of the region G
(f(z,y) =1onGand f(z, y) = 0 outside of G)®.

*Cf. A. KouMoGgorov and M. LEoNTOVICH, Zur Berechnung der mittleren
Brownschen Fliche, Physik. Zeitschr. d. Sovietunion, v. 4, 1933.

Chapter V

CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS

§ 1. Conditional Probabilities

In § 6, Chapter I, we defined the conditional probability, Py (B),
of the event B with respect to trial %. It was there assumed that %
allows of only a finite number of different possible results. We
can, however, define Py(B) also for the case of an 9 with an infinite
set of possible results, i.e. the case in which the set E is partitioned
into an infinite number of non-intersecting subsets. In particular,
we obtain such a partitioning if we consider an arbitrary function
u of ¢ and define as elements of the partition %, the sets » = con-
stant. The conditional probability Py, (B)we also denote by P.(B).
Any partitioning % of the set E can be defined